jueves, 8 de enero de 2009

hidrogeno como fuente de enrgia

http://www.youtube.com/watch?v=RkbF38wUKik

bueno aunque los mande a youtube
ps ya aprovechen

HIDROGENO COMO FUENTE DE ENERGIA

Elemento Hidrógeno: Sólo hay un elemento en la tabla periódica que no pertenezca a ningún grupo en particular: el hidrógeno. Este elemento tiene una química singular. Además sus tres isótopos difieren tanto en sus masas moleculares que las propiedades físicas y químicas son sensiblemente diferentes.
El hidrógeno es el elemento más abundante del Universo. Representa, en peso, el 92% de la materia conocida; del resto, un 7% es de He y solamente queda un 1% para los demás elementos. En nuestro planeta es el 10º elemento mas abundante en la corteza terrestre Lo encontramos combinado en forma de agua (su compuesto mas abundante; cubre el 80% de la superficie del planeta), materia viva (hidratos de carbono y proteínas; constituye el 70% del cuerpo humano), compuestos orgánicos, combustibles fósiles (petróleo y gas natural), etc. El hidrógeno es constituyente de un número muy grande de compuestos que contienen uno o más de otros elementos. Esos compuestos incluyen el agua, los ácidos, las bases, la mayor parte de los compuestos orgánicos y muchos minerales. Los compuestos en los cuales el hidrógeno se combina sólo con otro elemento se denominan generalmente hidruros.
El empleo más importante del hidrógeno es en la síntesis del amoniaco. La utilización del hidrógeno está aumentando con rapidez en las operaciones de refinación del petróleo, como el rompimiento por hidrógeno (hydrocracking), y en el tratamiento con higrógeno para eliminar azufre. Se consumen grandes cantidades de hidrógeno en la hidrogenación catalítica de aceites vegetales líquidos insaturados para obtener grasas sólidas. La hidrogenación se utiliza en la manufactura de productos químicos orgánicos. Grandes cantidades de hidrógeno se emplean como combustible de cohetes, en combinación con oxígeno o flúor, y como un propulsor de cohetes impulsados por energía nuclear.
¿Se convertirá el hidrógeno en el combustible renovable e inagotable del futuro? Los científicos van tras dos pistas distintas. Una, muy avanzada y en fase de desarrollo, se refiere a las pilas de combustible. La otra, mucho más remota, se refiere a la fusión de núcleos de hidrógeno.
A diferencia de las pilas convencionales, que agotan los reactivos electroquímicos que generan la corriente, las pilas de combustible son generadores de electricidad (y, accesoriamente, de calor) que utilizan la reacción entre el hidrógeno que se renueva continuamente (como combustible) y el oxígeno del aire (como comburente) para producir agua liberando electrones. En Europa, Estados Unidos y Japón se está llevando a cabo una intensa actividad de investigación industrial sobre numerosas variantes de pilas de combustible, tanto para motores eléctricos de vehículos como para nuevas generaciones de centrales de producción de electricidad y calor. Esta prometedora forma de producción de energía sostenible debería penetrar de manera importante en el mercado de aquí a una o dos décadas.
La ambición sin medida común de lograr la fusión tiene por objeto reproducir de forma controlada el ingente proceso de producción de energía que acaece en el universo estelar mediante la fusión de núcleos de hidrógeno en núcleos más pesados de helio. Desde hace casi cuatro décadas, Europa se ha volcado en una intensa investigación de esta energía del futuro, que haría saltar por los aires la hipoteca que supone el agotamiento progresivo de los recursos fósiles, y ello sin producir emisiones contaminantes ni residuos radiactivos. En la actualidad, la fusión es objeto de una amplia cooperación mundial (ITER) encaminada a conseguir un primer reactor experimental.
El impacto medioambiental, depende de la forma de extracción que se utilice para la obtención del hidrógeno. Hoy aproximadamente el 95% de la producción del hidrógeno se realiza a través de la quema de combustibles fósiles, por tanto las emisiones de gases invernaderos a la atmósfera están presentes en estas extracciones. Solo el 5% aproximadamente de la producción del hidrógeno se realiza a través de la electrolisis, la separación del hidrógeno que contiene el agua común, este método no es el más apropiado, ya que la energía utilizada para este proceso de extracción es mayor que la producida posteriormente del hidrógeno.

martes, 18 de noviembre de 2008

sábado, 15 de noviembre de 2008

EFECTO INVERNADERO

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de una atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con el actual consenso científico, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.
El efecto invernadero es un factor esencial del clima de la Tierra. Bajo condiciones de equilibrio, la cantidad total de energía que entra en el sistema por la radiación solar se compensará exactamente con la cantidad de energía radiada al espacio, permitiendo a la Tierra mantener una temperatura media constante en el tiempo.
Todos los cuerpos, por el hecho de estar a una cierta
temperatura superior al cero absoluto, emiten una radiación electromagnética. La radiación electromagnética se traslada sin obstáculos a través del vacío, pero puede hacerlo también a través de medios materiales con ciertas restricciones. Las radiaciones de longitud de onda más corta (o frecuencia más alta) son más penetrantes, como ilustra el comportamiento de los rayos X cuando se los compara con la luz visible. También depende de las propiedades del medio material, especialmente del parámetro denominado transmitancia, que se refiere a la opacidad de un material dado para radiación de una determinada longitud de onda.
El Sol es el responsable de casi toda la energía alcanzada desde el exterior a la superficie de la Tierra. El Sol emite radiación que se puede considerar de onda corta, centrada en torno a la parte del espectro a la que son sensibles los ojos, y que llamamos por ello luz visible. Incluye también dosis significativas de radiación ultravioleta, de longitud de onda menor que la visible. La parte ultravioleta es absorbida en buena parte por el ozono y otros gases en la alta atmósfera, contribuyendo a su calentamiento, mientras que la luz visible traspasa la atmósfera casi sin problemas. La Tierra intercepta una energía del Sol que en la parte superior de la atmósfera vale 1366 W/m2. Sin embargo, sólo intercepta energía la sección de la Tierra orientada hacia el Sol, mientras que la irradia a toda la superficie terrestre, así que hay que dividir la constante solar entre 4, lo que lleva a 342 W/m2.
La Tierra, como todo cuerpo caliente, emite radiación, pero al ser su temperatura mucho menor que la solar, emite radiación infrarroja de una longitud de onda mucho más larga que la que recibe. Sin embargo, no toda esta radiación vuelve al espacio, ya que los gases de efecto invernadero absorben la mayor parte.
La atmósfera transfiere la energía así recibida tanto hacia el espacio (37,5%) como hacia la superficie de la Tierra (62,5%). Ello representa 324 W/m2, casi la misma cantidad de energía que la proveniente del Sol, aún sin albedo. De este modo, el equilibrio térmico se establece a una temperatura superior a la que se obtendría sin este efecto. La importancia de los efectos de absorción y emisión de radiación en la atmósfera son fundamentales para el desarrollo de la vida tal y como se conoce. De hecho, si no existiera este efecto la temperatura media de la superficie de la Tierra sería de unos -22
ºC, y gracias al efecto invernadero es de unos 14ºC.
En zonas de la Tierra cuya atmósfera tiene poca proporción de gases de efecto invernadero (especialmente de vapor de agua), como en los grandes desiertos, las fluctuaciones de temperatura entre el día (absorción de radiación solar) y la noche (emisión hacia el cielo nocturno) son muy grandes.
Desde hace unos años el hombre está produciendo un aumento de los gases de efecto invernadero,
[2] con lo que la atmósfera retiene más calor y devuelve a la Tierra aún más energía causando un desequilibrio del balance radiativo y un calentamiento global.
Los denominados gases de efecto invernadero o gases invernadero, responsables del efecto descrito, son:
Vapor de agua (H2O).
Dióxido de carbono (CO2).
Metano (CH4).
Óxidos de nitrógeno (NOx).
Ozono (O3).
Clorofluorocarburos (artificiales).
Si bien todos ellos (salvo los CFCs) son naturales, en tanto que ya existían en la atmósfera antes de la aparición del hombre, desde la
Revolución Industrial y debido principalmente al uso intensivo de los combustibles fósiles en las actividades industriales y el transporte, se han producido sensibles incrementos en las cantidades de óxidos de nitrógeno y dióxido de carbono emitidas a la atmósfera, con el agravante de que otras actividades humanas, como la deforestación, han limitado la capacidad regenerativa de la atmósfera para eliminar el dióxido de carbono, principal responsable del efecto invernadero.
Estos cambios causan un paulatino incremento de la temperatura terrestre, el llamado cambio climático o calentamiento global que, a su vez, es origen de otros problemas ambientales:
Desertización y sequías, que causan hambrunas
Deforestación, que aumenta aún más el cambio
Inundaciones
Fusión de los casquetes polares y otros glaciares, que causa un ascenso del nivel del mar, sumergiendo zonas costeras.[3] Sólo influye en dicha variación el hielo apoyado en suelo firme, ya que el hielo que flota en el mar no aumenta el nivel del agua.
Destrucción de
ecosistemas
Además, el efecto invernadero es uno de los principales factores que provocan el calentamiento global de la Tierra, debido a la acumulación de los llamados gases invernadero CO2, H2O, O3, CH4 y CFCs en la atmósfera.